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Figure 1. The BlyncSync gesture set is enabled by performing a pair of synchronous blink and touch events. The gesture is only 
recognized if the touch and blink events start and end within a small threshold, reducing the chance of false activations. 

ABSTRACT 
Input techniques have been drawing abiding attention along 
with the continual miniaturization of personal computers.  In 
this paper, we present BlyncSync, a novel multi-modal 
gesture set that leverages the synchronicity of touch and 
blink events to augment the input vocabulary of 
smartwatches with a rapid gesture, while at the same time, 
offers a solution to the false activation problem of blink-
based input. BlyncSync contributes the concept of a mutual 
delimiter, where two modalities are used to jointly delimit 
the intention of each other’s input. A study shows that 
BlyncSync is 33% faster than using a baseline input delimiter 
(physical smartwatch button), with only 150ms in overhead 
cost compared to traditional touch events. Furthermore, our 
data indicates that the gesture can be tuned to elicit a true 
positive rate of 97% and a false positive rate of 1.68%. 
Author Keywords 
BlyncSync, Gaze UI, Smartwatch, Mutual Delimiter, Mobile 
HCI, Wearables. 
CSS Concepts 
• Human-centered computing~Human computer
interaction (HCI)~Interaction techniques;

INTRODUCTION 
Input techniques have been drawing abiding attention along 
with the continual miniaturization of personal computers in 
the past decades. From tabletop computers to pocket-carried 
mobiles; wrist-placed smartwatches to ubiquitous IoT 
devices, HCI researchers strive to develop proper input 
modalities to interact with emerging devices with different 
form factors and using scenarios.  

Oftentimes, multiple input channels are incorporated all 
together if a single channel is deficient to enable satisfactory 
interaction. For instance, though touch input is replacing 
mouse and keyboard as the dominant input modality as 
computing shifting from PCs to mobile devices, it becomes 
notoriously challenging when the form factors further 
diminish to the size of a smartwatch. Therefore, despite 
smartwatches are becoming increasingly popular, 
manufacturers still struggle to design self-sufficient input 
techniques providing adequate operations. As a result, 
commercial products often adopt hybrid methods combining 
multiple input modalities, such as touch screen, hardware 
buttons, bezels, and voice input.  

Similarly, while eye inputs, e.g. gaze or blink, have been 
shown promising to provide instant and subtle interaction 
[14, 37, 59], it suffers from the problem of false activation as 
human eyes are meant to serve as perceptive organs, and did 
not evolve to be fully controllable – the Midas Touch 
Problem [23]. Therefore, additional mechanisms, such as 
dwell [23], smooth pursuit movements [14] or additional 
controllers [47] , need to be utilized to mitigate the problem 
of false positives. 
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These modalities, however, often either contribute 
independently to the input expressivity or only serve as 
auxiliary modalities supplementing the primary input 
channel. In contrast, inspired by the existing concept of 
mutual disambiguation [43], where two error-prone 
modalities are combined to reduce the recognition errors of 
each other, we see the opportunity of blending multiple input 
channels to delimit and reinforce each other. In this paper, 
we present the concept of a mutual delimiter, where two 
modalities are used to jointly delimit the intention of each 
other’s input – therefore increasing their respective input 
vocabularies and/or addressing any potential issues of false 
activations. We instantiated the concept of mutual delimiter 
by designing BlyncSync, a novel multi-modal gesture set 
that leverages the synchronicity of touch and blink events to 
delimit both input at the same time. augment the input 
vocabulary of smartwatches. In doing so, BlyncSync 
improve the input vocabulary of smartwatch with a rapid 
gesture, while contributing a generalizable solution to the 
false activation problem of both blink-based and touch-based 
input.  

To inform the design of BlyncSync, we first conducted a lab 
study collecting data of touch and blink patterns during 
smartwatch use. The analysis showed that it is rare for 
subjects to perform synchronous touch and blink events. We 
then conducted a second study to evaluate the BlyncSync 
gestures set. The results showed that BlyncSync is easy to 
perform and is 33% faster than using a baseline input delimiter 
(physical smartwatch button), with only 150ms in overhead 
cost compared to traditional touch events. Furthermore, our 
data shows the gesture can be tuned to elicit a true positive 
rate of 97% while achieving a false positive rate of 1.68%. 
We then demonstrate several application scenarios that 
utilize BlyncSync gestures and discuss future lines of work. 
RELATED WORK 
In this section, we review research leveraging synchronous 
and correlated signals as input, research that enhances the 
input of smartwatches, as well as research that uses the eye 
as an input channel. 
Synchronous Gestures and Motion Correlation 
Prior work has investigated the use of synchronous signals 
as device input. In general, synchrony could be achieved by 
synchronous signals from multiple sources, such as devices 
[32, 35] or users [50]. Hinckley proposed a synchronous 
gesture of bumping two devices together for dynamic display 
tiling [17]; Smart-Its Friends [12] and SyncTap [52] used 
synchronous input on two devices to establish network 
connections. Synchronous gestures have also been used to 
enhance smartwatch input [35, 53, 62, 67]. Relevantly, 
Velloso et al. presented motion correlation [57] where user 
input becomes an act of synchronizing with a displayed 
motion for target selection. In contrast to these systems, 
BlyncSync is the first to explore the use of two synchronous 
input signals (blink and touch) from a single user to mutually 
delimit and thereby reinforce both input modalities. 

Augmenting Smartwatch Input  
Mitigating the fat-finger problem on [20] tiny touch screens 
and augmenting the input space for smartwatches have both 
been well explored to expand the input expressivity of 
smartwatches. For example, ZoomBoard [42] and 
Swipeboard [11] use multi-stroke touch gestures to enable 
accurate text entry on tiny screens.  NanoStylus [63] uses a 
finger-mounted stylus to avoid finger occlusion. TouchSense 
[21] leverages the differences in finger contact areas when 
touching at different angles.  

Past research also explored extending the input area of 
smartwatches to other components, such as the band [36, 46], 
bezel [5, 45] edge [40] and face [64]. Interactions 
surrounding the watch have also been explored. Skin Buttons 
[31] use projected icons and infrared proximity sensors to 
extend smartwatch interaction onto the arm. Abracadabra 
[16] and Gesture Watch [26] use a magnetic ring and 
magnetometer to track in-air finger motion. HoverFlow [28] 
and AuraSense [69] enable similar interactions using 
infrared proximity sensors and electric field sensing.  

Most of these prior techniques only exploit a single input 
modality (touch), leaving other input modalities unused. 
Furthermore, gesture-based techniques for any interactive 
platform are limited, in that they require an explicit delimiter, 
to distinguish between command gestures and default 
command input [18]. Our work leverages the additional input 
channel of eye blinks, creating new opportunities for 
multimodal interaction with smartwatches, while also 
introducing a novel delimiter for command input. 

Eye Expression as Input Channel 
Eye expression, such as gaze [14, 23, 47] and blink [27, 29, 
37] has long been considered as an alternative input modality 
for applications and users that require hands-free control [6, 
23, 37]. For example, Jacob studied utilizing fixated gaze 
input on statically presented targets for selection [23], 
whereas BlinkWrite [6, 37] uses blink as the only input 
modality to enter text on a scanning keyboard. However, 
since eye input is prone to involuntary activation, it usually 
requires additional mechanism, e.g. long dwell on the 
intended target, long blink, or supplementary buttons. Recent 
research [14, 60] has found using smooth pursuits, slow and 
consistent eye movements that occur when the eyes follow a 
moving object, can effectively prevent false activations. 
Particularly, Orbits [14] applied smooth pursuits on 
smartwatches to enable hands-free input. However, to reduce 
false positives, Orbits suggests a 1-second activation period 
to recognize gestures.   

It has also been suggested in prior work that eye expression 
would be better served as an auxiliary input modality [47, 
66] supplementing more traditional channels of input. For 
example, Zhai et al. [66] proposed to use gaze to improve the 
performance of manual pointing using gaze for distant jumps 
and then fine-tune the final position with manual cursor 
movements. Gaze-Touch [47] and Gaze-Shifting [48] further 
extends the concept to multi-touch and touch+pen devices.  

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 5 Page 2



 

 
Figure 2. The first part of our Touch & Blink gesture design space relates to the duration and timing of the touch and blink events. 
The second part of our Touch & Blink gesture design space relates to the nature of the touch and blink events. 

There is also a significant body of work exploiting the 
subtleness of gaze for private and secure interaction on 
mobile devices. For example, to prevent shoulder surfing 
when entering password, Khamis et al. [24, 25] use the 
combination of gaze and touch while Almoctar et al. [2] 
leverage both back-of-device touch and smooth pursuit eye 
movements. Eye modality is also used to enhance speech 
interaction [13, 68] since it helps relieve the need for the 
lengthy descriptions when specifying objects. Our work 
differs with the reviewed literature in two ways. First, we 
focus on the underexplored space that takes advantage of the 
synchronicity between eye and touch. Moreover, our work 
suggests a novel solution to the false activation problem for 
both touch gestures and eye-based input, by utilizing both 
modalities at the same time to create a “mutual delimiter”. 
DESIGN SPACE OF TOUCH & BLINK GESTURES 
The key insight of our work is to design gestures based on 
the synchronous occurrence of touch and blink events, which 
opens a large set of possible input gestures. We define Touch 
& Blink Gestures as the broad class of gestures that consist 
of coordinated touch and blink events. Specifically, we 
define a touch as any gesture involving placing and removing 
fingers on a touchscreen, including tap, swipe, and long 
press, etc. A blink by definition is the process of closing and 
opening both eyes once. To the best of our knowledge, no 
previous work has considered this class of gestures. 
Therefore, we first discuss an associated design space 
grounded by prior literature in gesture input.  
Duration 
Threshold durations have been leveraged in prior work to 
differentiate deliberate blinks from natural ones [6, 37]. 
Similarly, extended touch events are widely used across 
commercial touch-based products to distinguish between 
different actions. While durations can improve a system’s 
ability to distinguish between a user’s intent, it has the trade-
off of slowing down the pace of the user and interrupting the 
flow of interaction. As such, we avoid any restrictions on the 
duration of events required for BlyncSync. 
Event Sequence 
Just as a tap and double tap can have different meanings, it 
is possible to design Touch & Blink Gestures with multiple 

blinks and touches. More complex sequences using Morse 
code [39] or rhythm-based gestures [15, 41, 61] could also 
be used. However, as sequence lengths increase, so too will 
the complexity of the gestures. Therefore, our designs will 
focus on just a single touch and blink event. 
Event Synchronization 
Because touch and blink events can occur in parallel, it is 
important to understand and formally define what it means 
for two events to be synchronous. We propose to decompose 
each event into its start and end times (Figure 3), resulting in 
three types of synchronous Touch & Blink gestures: 
synchronous start, synchronous end, and synchronous start 
and end. Because it is impractical to expect humans to 
perform gestures with perfect synchronization, a threshold 
tolerance must be applied to account for offsets. Setting 
threshold offsets could be a key method for reducing false 
positives, but at the cost of increasing the required accuracy 
to perform the gestures. As such, this parameter will be tuned 
based on results from the first study on false activations. 
Gaze 
To enable Touch & Blink gestures, it is likely that eye 
tracking equipment will be used to detect the user’s blinks. 
The gaze direction could thus serve as an additional 
enhancement to Touch & Blink Gestures. Our initial design 
will not leverage gaze but will demonstrate its use later in 
our application scenarios.  
Blink vs Wink 
Wink is another possible eye expression for interaction [38]. 
A benefit of using winks is that it will be robust to false 
activations, as naturally occurring winks are rare. However, 
winks are more prone to causing eye-fatigue, and some 
people are unable to wink altogether [44]. To avoid these 
additional difficulties, we utilize blink events only. 

 
Figure 3. Event Synchronization. When comparing the two 
events, both the start and end offset can be considered. 
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Touch Gesture Type 
A final consideration for Touch and Blink gestures is the 
nature of the touch gesture. The two most common forms of 
touch input events are tap and swipe (or drag). Both of these 
gestures can be quick and are easy to perform. Furthermore, 
swipe events can expand the gesture vocabulary by 
distinguishing between different directions [30]. As such, we 
consider both tap and swipe gestures in our explorations.  
Summary 
The design space of Touch & Blink Gestures produces many 
interaction possibilities. To narrow our scope, we have 
focused on gestures that will be easy and fast to perform. 
This is especially important for smartwatch designs, which 
are meant to enable short bursts of interaction [3, 4]. In our 
design of BlyncSync, only a subset of the design space was 
exploited. However, it is our hope that by presenting this 
broader design space, we can frame our design of BlyncSync 
within the broader class of Touch & Blink Gestures and 
inform further efforts in this area. 
STUDY 1: FALSE ACTIVATIONS 
Utilizing synchronization between touch and blink events 
could create a simple gesture set that will have low false 
activation rates. However, it is unclear how often synchronous 
touch and blink events would occur involuntarily. Previous 
studies have revealed average blink rates, but it has been 
found that blink rates are dependent on the context of a user’s 
task [49]. In this study, we examine the patterns of touch and 
blink when participants are using two different smartwatch 
applications. We also include two analogous physical tasks, 
to compare to blink rates during similar paper-based tasks. 
Participants 
We recruited 12 participants (5 females) with a mean age of 
26.1 (min=22, max=30). All the participants recruited had 
normal, uncorrected vision to avoid the interference that 
eyeglasses could have on blink detection.  
Tasks and Procedure 
The participants were asked to perform four tasks, two with 
a smartwatch and two with physical paper. We designed two 
smartwatch apps that had varying degrees of interaction 
intensity: Calculator and News Feed. For the Calculator task, 
which required intensive input, the application would show 
a formula for participants to type. Once the formula was 
correctly typed, the equal sign button would appear for 
participants to submit the calculation. Another formula 
would show after the answer was calculated. The News Feed 
task elicited lighter interaction intensity, requiring a mix of 
reading and touch input. Users would swipe to read through 
short news articles. For each article, the app would show a 
photo and a title. After clicking the title, the app would show 
the content of the news. Participants were asked to read the 
text, and then press a button to switch to the next article.      

The paper tasks were reading an article and solving a word 
search puzzle. The former requires no hand action, eliciting 
lighter interaction, while the latter requires intense 
interaction with the hand.  

Users were asked to perform each task for 5 minutes. While 
participants knew they were wearing eye-tracking hardware, 
they were not informed that blink rates were being tracked 
until the study was completed. The participants’ heads were 
fixated with a Good-Lite chin rest and they rested their arm 
on a support stand during the study to reduce fatigue. Before 
the study, we adjusted the height of desk, chair and chin rest 
to ensure participants felt comfortable throughout the study.  
Study Design 
The study was a 2x2 within-subject design, with independent 
variables of platform (smartwatch, paper), and intensity 
(light, heavy). Each combination of independent variables 
mapped to one of the four tasks, as described above (Figure 
4). The ordering of independent variables was fully 
counterbalanced. Participants were given optional one-
minute breaks between tasks.  

 
Figure 4. The 2x2 design of Study 1 and four associated tasks. 

Implementation and Apparatus 
We conducted the experiment in a quiet laboratory setting 
where participants sat at a height-adjustable desk wearing a 
Samsung Galaxy Watch 46MM (SM-R800), a multi-touch 
smartwatch with a circular AMOLED screen (360 x 360 
resolution) running the Tizen Based Wearable OS 4.0. 
Participants’ eyes were tracked by a Tobii Pro Glasses 2 with 
a tracking frequency of 50 Hz. As shown in Figure 5, a 
Python web server was developed and run on a Macintosh 
laptop. The eye tracker data was streamed to the server via a 
wireless UDP connection. For data transmission between the 
smartwatch and server, we used WebSocket due to its low 
latency and bi-directional communication. We applied 
Cristian’s clock synchronization algorithm [12] to calibrate 
the time systems of the smartwatch, eye tracker and server. 
The smartwatch applications were written in JavaScript. We 
also recorded the study with a Logitech C922 Pro Stream HD 
Webcam with 60 fps at 720p, directed at the user’s face. 

 
Figure 5. The system diagram. 
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 Touch Blink 
Rate Duration Rate Duration 

 

Calculator 79.6/min 
(σ = 8.3) 

89ms 
(σ = 17.3) 

4.8/min 
(σ = 3.5) 

70ms 
(σ =11.9) 

News Feed 38.2/min 
(σ = 14.7) 

564ms 
(σ = 303.4) 

8.7/min 
(σ = 6.4) 

74ms 
(σ = 13.3) 

 

Puzzle N/A N/A 4.3/min 
(σ = 3.2) 

62ms 
(σ = 9.9) 

Article N/A N/A 8.2/min 
(σ = 5.3) 

70ms 
(σ = 12.8) 

Table 1. Average blink and touch rates, and their durations. 

Blink Detection 
We leveraged the gaze data yielded by the eye tracker to 
detect the occurrence of a blink. Blinks and their durations 
were calculated during times when the pupil center-
coordinates of both eyes were not reported. The approach 
leverages the specialized hardware and algorithms of the eye 
tracker and requires no additional computational cost. 
During manual review of the webcam footage, we observed 
some events were falsely classified as blinks if the user 
moved their eyes quickly. As such, we only classified a blink 
if the gaze velocity was under 6.25 units/s in the eye tracker’s 
gaze point coordinate system. During pilot tests, we found 
our method was faster and more accurate than webcam-based 
OpenCV algorithms. To prevent the eyewear from dropping 
down the nose, we controlled the participant’s view angle 
and ensured the glasses were comfortably positioned.  
Results 
Across the 12 participants, a total of 7067 touch events and 
1562 blink events were collected. The average blink and 
touch rates, and their durations, are reported in Table 1. The 
task intensity had a significant effect of blink rates (F1,11 = 
12.235, p < 0.05), but there was not an effect of platform on 
blink rate. Consistent with prior literature, blink rates were 
lower when users were required to perform more intensive 
tasks [1, 65]. Blink durations were consistent among tasks 
except that of solving a word search puzzle, which was 
slightly shorter than others. This may have been due to a 
heavier visual workload [8]. Touch durations, as expected, 
were longer for the news feed task, which required dragging 
operations, while the calculator only required rapid tapping. 
The rates of blink and touch presented are based on a 
controlled lab study, we will discuss later in the paper how 
they might vary under different conditions. 
False Activation Analysis 
The main goal of the study was to understand how to design 
the BlyncSync gesture set in a way which minimizes false 
activations. Specifically, we were interested in knowing how 
often blink and touch events occur synchronously. As 
described in our design space, events could be considered 
synchronous if they start at the same time, end at the same 
time, or start and end at the same time. To analyze these 
variations, we took every touch event that occurred, and 
found its nearest blink event. We then calculated the distance 
between their start times and end times: 

𝑜𝑓𝑓𝑠𝑒𝑡	'()*(		 = 	𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒(1234 − 𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒361'7(869:;	 
𝑜𝑓𝑓𝑠𝑒𝑡	7:<		 = 	 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒(1234 − 𝑒𝑛𝑑_𝑡𝑖𝑚𝑒361'7'(869:; 

Figure 6 shows the results in a 2D dimensional space. The 
scatterplot is divided into four quadrants representing the 
sequential ordering: The bottom-left represents touches that 
occurred before a blink; the top-right represents touches that 
occurred after its closest blink; the top-left represent touches 
that completely encompassed a blink event; the bottom-right 
represents touch events that occur during a blink. 

From the plot we can see that most data points are distributed 
in the bottom-left (51.74%) and top-right (46.67%) 
quadrants.  This is reasonable since the other two quadrants 
represent an entire event contained by another. Given the 
short durations of both touch and blink events, this is 
unlikely to occur. All points in the top-left quadrant were 
swipes (1.58%), as blink events occurred within them. Only 
one point (0.01%) is in the fourth quadrant, representing 
touch events occurring within a blink. Across each quadrant, 
we consider the data points close to the origin representing a 
synchronous blink and touch. An offset of 250ms is used for 
illustration in Figure 6, representing 1.68% of all data. 

 
Figure 6. Offsets for all touch events (logarithmic scale). The 
majority of points fall within the top right and bottom left 
quadrants. Fewer than 2% of samples (orange dots) have a 
start and end offset both within 250ms (central yellow square). 

 
Figure 7. False activation rates by offset threshold when 
synchronizing the start, the end, and both the start and end. 
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The false activation rates for different offset values are 
shown in Figure 7. As illustrated, synchronizing both the 
start and end times results in lower false activation rates. The 
results are promising - only 0.2% of events had a start and 
end offset within 50ms, and only 2.7% of events had a start 
and end offset within 350ms. This data shows that by 
imposing an appropriate offset threshold, there should be an 
opportunity to design a Touch & Blink Gesture that will be 
easy to perform, while achieving low false activations.  
BLYNCSYNC 
Based on the results of study 1, we designed BlyncSync, a 
gesture set consisting of synchronous blink & touch events. 
To increase the gesture set vocabulary, we defined 5 
gestures: a blink synchronized with either a tap 
(BlyncSyncTap), or a swipe in 4 directions (BlyncSyncUp, 
BlyncSyncDown, BlyncSyncLeft, BlyncSyncRight).  

Guided by the results of our first study, we use both the start 
and end offset values for defining synchronization to 
minimize false activations. The Study 1 data indicates that a 
50ms offset would achieve a false activation rate of 0.2%. 
However, smaller thresholds would increase the precision 
needed to perform the gesture. We piloted 2 users’ ability to 
touch and blink at the same time and found they could 
typically do so within an average of 150ms. To allow for 
additional tolerance, we set the BlyncSync offset threshold 
to 250ms, which would still maintain a false positive rate of 
1.68%, according to our Study 1 data. 

BlyncSync Implementation  
The software and hardware implementation of BlyncSync is 
identical to the setup as described in Study 1. This approach 
enables real-time recognition and visual feedback. To 
classify the gesture, the recognizer needs to wait up to 250ms 
for a subsequent blink after each touch event. However, to 
account for data transmission delays (roughly 50ms), we 
chose a larger pause (400ms), to ensure all events are 
received prior to classification. This delay does not affect the 
synchronization recognition, as the time systems of the eye 
tracker and smartwatch are calibrated. The event is classified 
by calculating the offsets between the received touch and 
closest blink event. If both events start and end within 250ms 
of one another the event is classified as a BlyncSync gesture.  

STUDY 2: TECHNIQUE EVALUATION 
We conducted a study to evaluate the BlyncSync gestures. 
The study had three main goals. First, we wanted to test the 
usability, accuracy, and efficiency of the BlyncSync 
gestures. Second, we wanted to determine an optimal balance 
between false positives and true positives, by examining the 
actual offsets users would produce when trying to perform 
simultaneous blink and touch gestures. Third, we wanted to 
compare BlyncSync to existing techniques.  

For baseline comparison, we compared BlyncSync to using 
the physical button on the side of the smartwatch 
(ButtonTouch), a technique that is commonly utilized 
commercially to delimit between modes of interaction. We 
also compare BlyncSync to traditional unaltered touch 

gestures (TouchOnly). This condition was included in our 
study to understand the nature and extent of any overhead 
cost of the proposed technique. While we also considered 
other gaze-based techniques from the research literature (e.g. 
[14, 24, 25]), we elected not to include them in the study, as 
they were designed for different contexts. In our discussion 
section, we contrast our findings to prior techniques. 
Participants 
We recruited 12 participants (4 females) with a mean age of 
25.2 (min=22, max=28). Participants had normal 
uncorrected vision. Participants were paid $20 for 
completing the study, which took approximately 50 minutes.  
Tasks and Procedure 
Participants performed 5 gestures (tap, swipe up, swipe 
down, swipe left, swipe right) using 3 different techniques 
(TouchOnly, ButtonTouch, BlyncSync). Participants were 
asked to perform each gesture using their index finger and 
were told to perform the gestures as fast and accurately as 
possible. To begin a trial, participants first tapped the middle 
of the screen, which would start the task timer. An instruction 
would then be displayed, consisting of an arrow for the four 
swipe directions, and a dot for the tap gesture. The trial 
would end once the gesture was completed (Figure 8).  

For TouchOnly, the user could immediately perform the 
gesture upon receiving the instruction. For ButtonTouch, 
there would be a large rectangle behind the instruction to 
remind participants to first press the physical button before 
performing the gesture. After pressing the top right physical 
button of the watch, the rectangle would disappear, and the 
gesture could be performed. For BlyncSync, the instruction 
looked the same as for TouchOnly, but the user needed to 
blink while performing the touch gesture. The gesture was 
not considered complete until both the blink gesture event 
and touch event were completed (Figure 8).  

After each trial, visual feedback was shown. If a gesture was 
performed incorrectly, the reason of failure (e.g. blinking too 
early, swiping in the wrong direction) would be displayed on 
the screen. To support natural use, users were not required to 
use the chin rest or hold their arm in a specific posture, as we 
found our system was still able to detect blink events reliably. 

 
Figure 8. Task instructions and event sequences for 
TouchOnly, ButtonTouch, and BlyncSync. 
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Figure 9. Success Rates for the techniques and gestures. Error 
bars represent standard error for Figures 9, 10, 11 and 12. 

Design 
A repeated measures within-participant design was used. The 
independent variables were Technique (TouchOnly, 
BlyncSync, ButtonTouch) and Gesture (Up, Down, Left, 
Right, Tap). For each technique, participants were asked to 
perform six blocks of trials, each consisting of 20 trials (4 for 
each gesture, in random order). The ordering of technique 
was fully counter-balanced, with an optional 2-minute break 
between techniques. A short warmup was given to 
familiarize the participants with each of the techniques. 
Results 
Success Rates 
A repeated measures analysis of variance indicated that 
neither Technique nor Gesture had a significant effect on 
success rates. The success rates were 97.1% for BlyncSync, 
98.4% for ButtonTouch, and 99.4% for TouchOnly (Figure 
9). This was an encouraging result, demonstrating that 
participants are able to perform the BlyncSync gestures with 
a high degree of success. For ButtonTouch, most failed trials 
(1.5%) were due to omitting the button press. The BlyncSync 
errors were all due to synchronization offsets, mostly for 
when the blink event occurred too late (2.7%), and the 
remaining due to the blink occurring too early (0.2%).  
Completion Time 
A repeated measures analysis of variance revealed a 
significant effect of Technique (F2, 22 = 38.2, p < 0.001). 
TouchOnly had the fastest average time (0.56s), followed by 
BlyncSync (0.71s), and ButtonTouch (1.06) (Figure 10). A 
post-hoc Tukey’s test showed that the differences between 
each pair were significant (p < .05). There was no effect of 
Gesture on completion times [10]. It was encouraging to see 
BlyncSync was 33% faster than the baseline ButtonTouch, 
while adding only 150ms overhead cost to TouchOnly. The 
average blink duration was 120.3ms, 50.3ms longer than the 
natural blinks observed in study 1. This is consistent with 
prior work which has shown similar differences [9].   
Offsets Analysis 
For BlyncSync trials, we further analyzed the offsets 
between the blink and touch events. As shown in Figure 11, 
we found the average absolute offsets are well within the 
250ms threshold we set for the study, indicating that 

participants were able to accurately synchronize their touch 
and blink events. The average offset was 78ms. However, 
offset values are lower for the start time (65ms for Offsets 
and 91ms for Offsete). As such, it could be interesting to 
define separate thresholds for the start and end offset values. 
The relationship between the true positive rates and the offset 
threshold level is shown in Figure 12. When the offset is set 
to 250ms, a true positive rate of 97% is achieved and the 
standard error starts to converge (200ms: 5.15%, 250ms: 
1.65%, 300ms: 1.21%, 350ms: 1.03%).  

 
Figure 10. Completion times for the techniques and gestures. 

 
Figure 11. The offset values in the start and end times of 
synchronous touch and blink events. 

 
Figure 12. Relationship between offset and true positive rate. 
When the offset is set to 250ms, a true positive rate of 97% is 
achieved and the standard error starts to converge. 
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Figure 13. An ROC curve indicating the tradeoff between false 
positives and true positives. 

Combining this data with the results from Study 1, we can 
plot the ROC curve showing the relationship between true 
positives and false positives at different offset values (Figure 
13). Based on this data, we would suggest future 
implementations consider our chosen offset of 250ms which 
elicited a true positive rate of 97% while limiting the false 
positive rate to 1.68%. 
Subjective Feedback and Observations 
A number of participants commented that it was actually fun 
to use: e.g. ‘the blinking part was fun.’ (P3). Once users got 
accustomed to the novel input paradigm, they were able to 
use the technique efficiently and with ease, as evident by our 
study results. The learnability of BlyncSync is sufficiently 
high as we observed every participant was able to 
consistently succeed in performing BlyncSync after no 
longer than 3 minutes of use. Moreover, we did not observe 
any participants struggling to use the technique, experience 
frustrations, and none reported eye fatigue.  

In summary, our study showed that BlyncSync offers a new 
gesture delimiter to increase the input vocabulary for 
smartwatches, has minimal overhead (150ms) compared to 
standard touch, and outperforms a commonly used baseline 
modifier. In the next section, we discuss several applications 
of BlyncSync gestures.  
SAMPLE MOCKUP APPLICATIONS 
BlyncSync occupies a unique application space where blink 
and touch delimit each other.  Therefore, we see two key 
classes of use for BlyncSync gestures: 1) Blink-augmented 
touch input to increase the input vocabulary of smartwatches 
and 2) Touch-augmented gaze input, to enable the use of 
gaze-based interactions, while avoiding false activations. In 
this section, we demonstrate both of these concepts by 
proposing two mock-up applications that utilize BlyncSync: 

1. Smartwatch OS Shortcuts (Blink-augmented touch) 
2. Gaze-Based IoT Control (Touch-augmented gaze) 

Mockup 1: Smartwatch OS Shortcuts  
System-level functions, such as calling the main menu or an 
app, are usually achieved by hardware buttons on 
smartwatches or mobile phones. This is necessary because 
gestures on the display are reserved for the app in use. 
However, it is not feasible or desirable to allocate too many 

buttons on the hardware, and as shown in Study 2, moving 
the finger to press a button adds time to the input transaction. 

Therefore, we propose to use BlyncSync gestures as always-
available gestures to perform OS Shortcuts, which can 
complement existing hardware buttons. We developed a 
proof-of-concept application on a Samsung Galaxy watch. 
The system was developed using JavaScript and Tizen 
Application APIs. 

The two hardware buttons of the smartwatch already support 
exiting an application (without terminating it) and returning 
to the home menu. In addition, we mapped five frequently-
used system functions to the five BlyncSync gestures. 
BlyncSyncLeft and BlyncSyncRight switch to the last/next 
application. BlyncSyncDown closes and terminates the 
current application and BlyncSyncUp shows all recently used 
applications. Last, BlyncSyncTap locks the screen, putting 
the device to sleep (Figure 14). 

The use of these gestures would be more efficient than 
typical approaches on commercial smartwatches. For 
example, to switch between two apps, a user would need to 
repeatedly use a physical button to return to a home screen, 
and manually tap on the app of interest. We note that in 
practice, it would be possible to map any combination of 
smartwatch OS or application functions to the BlyncSync 
gestures, potentially configured by the end users.  

 
Figure 14. Illustration of using BlyncSync for Smartwatch OS 
Shortcuts. BlyncSyncLeft and BlyncSyncRight switch between 
apps. BlyncSyncDown closes and terminates the current app. 
BlyncSyncUp shows recently used apps. BlyncSyncTap locks 
the screen, putting the device to sleep 

Mockup 2: Gaze-Based IoT Control 
Using gaze to control appliances has been proposed by 
previous smart environment research [54, 55, 1]. Despite the 
rapidness of gaze control, it suffers the false activation 
problems we discussed previously. To address false positives, 
AmbiGaze [58] utilized smooth pursuits to trigger different 
smart home devices, but the process is time-consuming, 
lasting longer than 7 seconds to activate and trigger an object. 
We instead propose to use BlyncSync for smart environment 
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control, by looking at an appliance and performing a 
BlyncSync gesture. We demonstrate this concept with three 
devices – a set of smart lightbulbs, a Bluetooth speaker, and 
a large display. In all examples, object selection is based on 
calibrated eye gaze direction. Future work could apply more 
advanced object recognition techniques [33, 51].  

For the Large Display scenario, the user could display a 
notification which they received on their smartwatch. When 
the notification was received on the smartwatch, a 
BlyncSyncUp while looking at the large display would cause 
the details of the message to be shown on it, allowing the 
user to read the full details. This system was mocked up by 
connecting the laptop which detected the BlyncSync gesture 
to the display through HDMI. Python code was used to 
launch a webpage associated with the notification. 

To interact with a smart light, the user would look at it, and 
then use a BlyncSyncUp to turn it on, a BlyncSyncTap to 
switch colors, and a BlyncSyncDown to turn it off (Figure 
15a). The system was implemented with Philip Hue Light 
and Hue API and controlled through a Python web server. 

 
Figure 15. Gaze-based IoT Control. A) BlyncSyncUp while 
looking at a lamp turns it on. B) BlyncSyncTap while looking 
at a speaker retrieves a contextual UI on the watch. 

For the Bluetooth speaker we explored the idea of retrieving 
a contextual user interface. If the user was looking at the 
speaker, a BlyncSyncTap would launch a music player app 
on the smartwatch (Figure 15b). The user could then control 
the playback of music on the speaker to interact with the 
smartwatch with normal touch, blending the use of both 
BlyncSync gestures and normal touch. This example was 
implemented using the two-way connection between the 
smartwatch and laptop server. When the server detected the 

BlyncSyncTap, it would send a message to the smartwatch to 
launch its native music app.  

The advantage of using BlyncSync to control a smart 
environment is two-fold. First, BlyncSync solves the false 
activation problems of using gaze gestures, which enables 
instant activations and deactivations of smart devices. 
Second, complicated controls of devices can be transferred 
to the smartwatch, reducing the workload of eye input. 

DISCUSSION AND FUTURE WORK 
The results of our second study showed strong potential for 
the BlyncSync gestures which this paper introduces. Users 
were able to use the technique efficiently and accurately, 
with improved performance compared to a baseline mode 
switching technique. Our described sample applications 
demonstrate some of the opportunities that may be enabled 
by utilizing BlyncSync gestures in two main contexts (blink-
augmented touch, and touch-augmented gaze).  

We have also introduced a broader design space of touch & 
blink gestures, for which we have only started to explore.  As 
such, there are many important questions and issues 
surrounding our work which warrant discussion.  
Eye Tracking Technology 
Eye tracking technology has been slowly improving over the 
years. Commercial products are now able to track the eyes 
precisely with light-weight wearable glasses. In particular, 
existing smart glasses able to capture blink events [22]  show 
great potential for the use of BlyncSync in the near future. 
The eye tracker we used utilizes infrared cameras that detect 
the pupils with computer vision algorithms instead of 
measuring the eyelid movements, which might better 
characterize a blink event. Therefore, there is some 
ambiguity in detecting the timestamps of the blink start and 
end frames, i.e., when the pupils are not blocked by eyelids. 
Furthermore, optical blink detection is less consistent for 
users with glasses and contact lenses. Incorporating EEG or 
EOG information, e.g. JINS MEME [22], to capture the 
electrical signals of blinking could potentially be helpful. 
Furthermore, algorithms may need to be improved, and 
designed with power consumption in mind, if they are to be 
performed on the smartwatch itself. Alternatively, 
computation could be offloaded to a paired smartphone for 
greater performance. 
Learnability and Complexity of Gestures 
Since our goal was to find a set of gestures that would be 
robust to false positives and easy to perform, we only 
considered the most basic gestures from our described design 
space. It would still be interesting to design complex gestures 
when efficiency and simplicity is not a core priority. For 
example, one can use the sequential combination of 
BlyncSync and standard touch gestures for user 
authentication. In addition, other considerations in the design 
space could also be revisited, such as longer event durations 
or rhythm-based gestures [15, 41, 61].  

One benefit of the simplicity of our technique was that 
participants were able to learn the technique quickly without 
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the need for advanced guidance and training techniques. If 
more complex gestures were introduced, it would be 
interesting to explore techniques to improve the 
discoverability and learnability of the gestures, such as the 
use of visual guidance or feedforward [7]. 
In the Wild Evaluations and Implementations 
Our studies were conducted in a controlled laboratory 
environment. Though beyond the scope of this paper, we 
plan to conduct an in-the-wild evaluation to observe whether 
users would behave differently in their daily lives. It may 
also be useful to validate our false positive findings from 
Study 1 in the context of real-world smartwatch usage. In 
particular, the touch activations elicited in this study are 
much higher than what would be observed in real-world 
usage [34, 49] and the blink rates might vary under extreme 
conditions, e.g. fatigue [56]. Furthermore, the sample 
applications we demonstrated were only partially 
implemented, enough to provide a sense of the interaction 
that we envision. Future work could develop robust versions 
of these applications, to enable deployments and in-depth 
user evaluations. 
Avoid Conflicts with Common Touch 
The recognition of BlyncSync gestures requires the system 
to wait for a potential blink after a touch event occurs. 
Therefore, the recognition of touch events needs to be 
slightly delayed. We note that this is a long-standing UI 
architecture challenge not unique to our gesture. For 
example, many multi-touch interfaces offer different 
behaviors based on the number of contact points (e.g. 1 touch 
for drag, 2 touch for stretch). Such systems similarly need to 
consider how to handle a first event prior to receiving a 
second event that may or may not ever occur. BlyncSync 
could address this challenge by performing the classification 
immediately upon the touch release, if the eye is open. In rare 
cases when the eye is closed upon touch release, a small 
delay (<150ms) could be injected to wait for the potential end 
of the BlyncSync gesture. We note, in such cases, the user’s 
eyes would be closed, so this delay may not be perceived.  
False Activations and Error Recovery 
The results of Study 1 indicate that because start and end 
times must be synchronized, the number of non-intentional 
blinks while touching/gesturing is low. However, in rare 
instances where false activations do occur, some method of 
recovery should be provided. Future work could explore 
potential error recovery techniques specific to BlyncSync. 
Generalizability to Other Platforms 
Since BlyncSync provides a mutual delimiter for touch and 
eye input, it can be extended to enhance interaction on other 
touch platforms. For instance, it could be used in a similar 
manner on smartphones, tablets, and large touch-enabled 
display; It would also be interesting to see how the device 
form factor would influence the event rates observed in our 
first study. Moreover, it may be possible to use BlyncSync 
as a trigger in augmented reality platforms, as an alternative 
to in-air gestures, such as air tap. This could potentially 
reduce fatigue and increase gesture recognition accuracy. At 

a higher level, we believe the concept of mutual delimiters 
could be generalized to other mixed-modality platforms, 
similar to how mutual disambiguation has been explored 
across a range of modalities [43]. 
Contrasting to Existing Research 
BlyncSync contributes a novel method for increasing the 
vocabulary of smartwatch input, while at the same time, 
offers a solution to the false activation problem of blink-
based input.  We acknowledge that BlyncSync might have 
on par or less improvement on input expressivity compared 
to other smartwatch input techniques (e.g. [41]), while 
requiring additional efforts of wearing an eye tracker. 
Nonetheless, it is encouraging to see our study showing 
BlyncSync is efficient and accurate relative to prior 
techniques which have used gaze, e.g. Orbits. The average 
completion time of a BlyncSync was 0.71s, whereas Orbits 
utilizes a recognition window size of 1s – meaning its 
performance time would be greater than that. Furthermore, 
Orbits reports a false activation rate of 2.1% and a true 
positive rate of 83%, whereas BlyncSync elicits a false 
activation rate of 1.68% and a true positive rate of 97%.  
That being said, our technique was designed for different 
contexts of use, and we have not conducted a formal 
comparison to prior research systems under equivalent task 
conditions. Future work could perhaps survey the existing 
work, create a taxonomy of smartwatch input techniques and 
eye-based mobile interaction techniques, and contrast each 
of their benefits and limitations. Furthermore, since the 
studies in the paper focus on validating BlyncSync in 
smartwatch context, thoroughly  investigating BlyncSync as 
a confirmation mechanism for gaze-based input would be 
valuable as well. 
CONCLUSION 
We have presented BlyncSync, a set of multi-modal 
smartwatch gestures that were designed as input delimiters 
for both touch and eye input. Our work introduces the 
concept of mutual delimiters and offers a design space of 
Touch & Blink gestures. Our experiments showed that the 
BlyncSync gestures are resistant to false positives, while still 
achieving high true positive rates. Since BlyncSync is easy 
to perform and unlikely to be accidentally invoked, it 
provides an always-active input method for smartwatch 
interaction. Based on the study results, we further provide 
insights to the trade-off of selecting activation thresholds, 
which could enable deployments of BlyncSync within 
commercial products. Furthermore, since the synchronous 
touch and eye events serve as mutual delimiters, BlyncSync 
spans a unique application space that covers both smartwatch 
interaction and gaze input, as demonstrated by our sample 
applications. We hope our technique will serve as important 
groundwork for future work on multimodal wearable input.  
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